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Entanglements of two-dimensional honeycomb nets are constructed from free

tilings of the hyperbolic plane (H2) on triply periodic minimal surfaces. The

2-periodic nets that comprise the structures are guaranteed by considering

regular, rare free tilings in H2. This paper catalogues an array of entanglements

that are both beautiful and challenging for current classification techniques,

including examples that are realized in metal–organic materials. The

compactification of these structures to the genus-3 torus is considered as a

preliminary method for generating entanglements of finite �-graphs, potentially

useful for gaining insight into the entanglement of the periodic structure. This

work builds on previous structural enumerations given in Periodic entanglement

Parts I and II [Evans et al. (2013). Acta Cryst. A69, 241–261; Evans et al. (2013).

Acta Cryst. A69, 262–275].

1. Introduction

Thanks to advances in the mathematics of combinatorial tiling

theory (Delgado-Friedrichs & Huson, 1999; Delgado-

Friedrichs & O’Keeffe, 2003, 2005; Chung et al., 1984;

Delgado-Friedrichs et al., 2003), systematic enumeration of

nets in 3-space is now feasible. A substantial corpus of

examples is now available (O’Keeffe et al., 2008; Bonneau &

O’Keeffe, 2015). Most of these examples are characterized by

the net topology, and the entanglement of net edges is ignored.

The enumeration of multiple catenated nets, or self-entangled

nets, is a less developed programme, despite its intrinsic

interest and relevance to some aspects of materials. Alexander

Wells and Fischer, Koch and Sowa recognized the importance

of multiple sphere packings and nets, and discussed some

examples in detail (Wells, 1977; Fischer & Koch, 1976; Koch et

al., 2006; Sowa, 2009). They are often encountered in typically

highly porous metal–organic frameworks, whose various

catenation types have been the subject of a number of studies

(Batten & Robson, 1998; Chen et al., 2001; Blatov et al., 2004,

2014; Reineke et al., 2000; Miller, 2001). They are also found in

bicontinuous liquid crystalline mesophases and related

mesoporous tricontinuous inorganic derivatives (Han et al.,

2009; Kirkensgaard et al., 2014). Novel ‘polycontinuous’ open

foam-like patterns have also been formed starting from

multiple nets (Hyde & Ramsden, 2000; Hyde et al., 2009;

Schröder-Turk et al., 2013).

Though we can find no systematic exploration of inter-

woven nets, the possibility of forming regular patterns from

multiple interwoven nets was known, for example, to the

Dutch graphic artist M. C. Escher (Schattschneider, 2004).

Succeeding mathematical artists have also explored related

patterns; see, for example, Rinus Roelofs (Emmer &

Schattschneider, 2003). A classification of entanglement in

chemical frameworks is undertaken in Carlucci et al. (2003b,
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2014). This approach gives details of entanglement based on

polycatenation, self-catenation and interpenetration of edges

through other closed cycles, as well as entanglements of a

Borromean nature, involving no interpenetration. New tech-

niques also examine these entanglements from the perspective

of ‘ideal’ energy-minimizing geometry, inspired by the char-

acterization of tight knots (Evans et al., 2015).

A developing approach is to use triply periodic minimal

surfaces (TPMSs) as surface scaffolds to transform two-

dimensional patterns in the hyperbolic plane (H2) into three-

dimensional Euclidean (E3) structures with varying topology

and entanglement. A variety of structures in E3, from standard

nets to filament weavings, are constructed via tilings of TPMSs

that are projections of tilings in H2 (Robins et al., 2004b;

Ramsden et al., 2009; Hyde et al., 2015; Evans et al., 2013a,b;

Castle et al., 2012). Structures have so far been constructed on

the genus-3 Primitive (P) and Diamond (D) surfaces described

by Schwarz, Schoen’s Gyroid (G) surface (Schoen, 1970), and

Schwarz’s Hexagonal (H) surface (Fig. 1).

Tilings of H2 can be constructed to any level of complexity,

using the tools of combinatorial tiling theory (Huson, 1993;

Delgado-Friedrichs, 2003), see x2. Many (though far from all)

tessellations of H2 have two-dimensional hyperbolic symme-

tries that are commensurate with those of the hyperbolic

TPMSs. Some of those cases have translation subgroups that

are common to the translation group of the TPMS; we call

them ‘crystallographic hyperbolic groups’ (Hyde et al., 2014).

We can therefore map those hyperbolic tilings onto TPMSs, by

aligning the corresponding symmetry elements in the tiling of

H
2 with those on the TPMS, and form reticulations of the

TPMS by tile edges that are periodic in E3 and form crystalline

nets, whose unit cell is precisely that of the underlying TPMS.

This approach has been used to enumerate specific classes of

nets in some detail (Hyde et al., 2015). The details of the

technique as well as lists of examples are explained elsewhere

(Ramsden et al., 2009; Hyde et al., 2014).

This technique has been extended to include tiling H2 by

infinite tiles, called free tilings, whose edge arrays are related

to decorations of H2 by trees instead of conventional tessel-

lations (with finite polygons) (Hyde & Oguey, 2000; Evans et

al., 2013a,b). The simplest examples of free tilings are

‘regular’, with symmetrically equivalent faces, edges and

vertices, like the five Platonic polyhedra [and the ‘lunar’

polyhedra (Castle et al., 2012)], and ‘dense’. Two classes of

regular dense free tilings exist in hyperbolic space,

distinguished by their tile morphologies: ribbon tilings and

branched ribbon tiles (Evans et al., 2013a,b), that are in one-

to-one correspondence with each other. The edges of regular

dense ribbon tessellations (and related branched ribbon

tilings) of H2 are ‘dense forests’, consisting of close-packed

trees (Hyde & Oguey, 2000). These examples are readily

identified, since the convex hulls of adjacent trees also

tessellateH2 without gaps. (Indeed, the convex hulls define the

related branched ribbon tiling.)

Free tilings of H2 are interesting, because their projections

onto TPMSs generally contain a number of disjoint compo-

nent nets, mutually catenated, or entangled. Net entanglement

is a complex feature, analogous, though richer, to the

phenomenon of knotting (Castle et al., 2011; Schröder-Turk et

al., 2013; Evans et al., 2013a,b, 2015). Just as all distinct knots

are topologically equivalent (to a closed loop, S1, in space),

but cannot be interconverted without changing under–over

crossings, distinct isotopes of nets are topologically equivalent

(i.e. they are isomorphs) but cannot be morphed into each

other without ‘phantom crossings’, where edges pass through

each other. Similarly, distinct entanglements or catenations of

multiple nets cannot be interconverted without edge crossings.

Free tilings of H2 need not be dense. For example, trees can

be symmetrically deleted from a regular dense ribbon tiling so

that the pattern remains regular, but adjacent trees are sepa-

rated by ribbon-shaped domains that are edge-free. Many

other reticulations of H2 by trees are possible, characterized

by convex hulls that do not themselves tessellate H2, leaving

gaps. We call these tilings ‘rare’, by analogy with rare sphere

packings (O’Keeffe, 1991). Rare free tilings of H2 contain tiles

that are branched ribbons (Evans et al., 2013a,b). (Note that

rarification of dense ribbon tilings necessarily morphs the tiles

into branched ribbons.) In this paper we discuss the simplest

examples of regular rare free tilings, building on the founda-

tions of free tilings explored in two earlier papers that deal

with regular dense examples (Evans et al., 2013a,b). In parti-

cular, we adopt a similar naming scheme for rare tilings,

labelling distinct tilings via the number of their discrete group

N and the edge length in the rare forest, l, e.g. ?246NRTðlÞ,

where RT signifies a Regular Tree structure. Admissible

groups are listed in Robins et al. (2004b); we adopt the same

numbering scheme for groups as listed there.

Further, we introduce a method of characterization of these

structures, which involves compactifica-

tion of the extended structure to a finite

object on the tritorus. One can formally

identify, or glue, points on an infinite

TPMS that are equivalent by a transla-

tion vector of the underlying translation

lattice of the periodic surface, giving a

finite ‘compactified’ boundary-free

surface patch, that is free of translations.

For the TPMSs considered here, that

compact patch is a closed surface of

genus-3 (a tritorus) (Robins et al.,

2004a,b). When the surface reticulation
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Figure 1
Genus-3 triply periodic minimal surfaces: (a) Schwarz’s primitive (P) surface, (b) Schwarz’s
diamond (D) surface, (c) Schoen’s gyroid (G) surface, (d) Schwarz’s hexagonal (H) surface. The P,
D and G surfaces are decorated with a ?246 tiling, and the H surface with a ?2226 tiling [using
Conway’s orbifold notation for two-dimensional symmetry groups (Conway & Huson, 2002)].



is maintained through the compactification process, a finite

embedded graph results, which is an embedding of the

quotient graph of the net (Delgado-Friedrichs & O’Keeffe,

2005; Eon, 2005). In general, these embeddings are complex

and entangled.

2. Nomenclature

In the interest of clarity, we first define terms. A graph is a

topological object without geometry, defined by points and

their mutual connections via edges; simple graphs have no

more than one edge between any vertex-pair. We discuss here

both finite and infinite graphs, with an (un)bounded number of

vertices and edges. An embedding of a graph is a geometric

realization of that graph in a space, with assigned geometry

(e.g. coordinates) for vertices and all edge points. The number

of independent translation vectors of the graph embedding

defines its periodicity: we are concerned here with 0- and

2-periodic graph embeddings. The number of edges that share

a vertex characterizes the degree of that vertex; if all vertices

have equal ‘valence’ (e.g. z), the graph and its embeddings

have degree z. A k-connected graph requires at least k vertices

and their associated edges to be deleted from the graph to split

it into more than a single disjoint graph. In order to classify

discrete groups of hyperbolic space, we adopt the orbifold

concept, developed by Thurston (1980), which essentially

describes all symmetry operations acting on a single asym-

metric domain, and use Conway’s orbifold nomenclature

(Conway, 1992). Here we deal only with the ‘Coxeter’ and

‘stellate’ classes, whose orbifolds contain exclusively mirror

boundaries and centres of rotational symmetry (cone points),

respectively (Hyde et al., 2014). Examples discussed here are

derived from Coxeter and stellate tilings

belonging to the orbifolds ?243 and 243

with four distinct twofold centres of

rotation and one threefold.1

Tilings of H2 can be constructed of

arbitrary complexity, using the tools

of Delaney–Dress combinatorial tiling

theory. This technique has been

explained in detail elsewhere (Huson,

1993; Delgado-Friedrichs, 2003) and we

give a very brief summary only here.

Delaney–Dress theory encodes tilings

via involutions of chambers through

edges of three types, s0, s1 and s2.

Chambers are constructed from the

tiling by forming a star of edges from the

tile mid-points to all mid-points of the

tile edges as well as tile vertices. Those

edges along with the edges of the

underlying tiling form chambers whose

vertices lie on tile vertices (labelled as

0 vertices), edges (1) or faces (2).

Chamber edges carry labels corre-

sponding to the label of the opposite

vertex (not on the edge). Chambers are labelled A;B;C; . . .
and those chambers related by symmetries of the underlying

orbifold carry the same label. Adjacent chambers are related

by involutions, indexed by their common edge. Those invo-

lutions determine the orbifold. The tiling topology is captured

by indices m01 and m12 that correspond to the multiplicity of

each chamber around a tile centre and vertex, respectively

(equal to the indices in the Schläfli symbol). The combined

encoding of involutions s0; s1; s2 and orders of m01 and m12

(the ‘D-symbol’) uniquely defines the tiling. The D-symbol is

tabulated in Fig. 2 for a tiling with symmetry ?2223.

The corresponding description of free tilings requires a

further extension of this nomenclature. We form free tilings by

deleting ‘ghost’ edges from a conventional tiling (with finite

faces), and preserve the Delaney–Dress chamber structure of

the parent conventional tiling. By associating each free tiling

with a conventional tiling, free tilings inherit the enumerable

structure of D-symbols. These free tilings are denoted by the

original Delaney–Dress encoding with an additional signifier,

namely a 1-vertex rather than the standard 1-vertex, on the

chambers that now contain a ghost edge. The symbol may be

tabulated identically to regular tilings; however the chambers

containing real edges are given in bold font, and the chambers

with ghost edges in regular font. The D-symbol is tabulated in

Fig. 3 for a free tiling with symmetry ?2223. We note that

rigorous description of free tiling theory is still in progress

(Evans et al., 2013a).
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Figure 2
The Delaney–Dress representation of a regular f4; 6g tiling on the ?2223 orbifold. The edge passes
along two mirror boundaries from the ?3 site to two ?2 sites.

Figure 3
The Delaney–Dress representation of a regular ribbon tiling on the ?2223 orbifold. The edge passes
along the mirror boundary from the ?3 site to the ?2 site (Evans et al., 2013a).

1 We have modified Conway’s orbifold naming scheme. Our 243 is his 22223.
Our abbreviated form highlights the difference between this orbifold and its
close relative 233 (2223).



3. Maximal symmetry of rare regular tilings

In our previous analyses of regular free tilings, we established

that regular ribbon degree-k tilings with orbifolds ?222k,

2 ? 2k, 222k and 2k� form dense patterns in H2 (Evans et al.,

2013a,b). The simplest examples are degree-3, whose least

symmetric members (with the largest orbifold area) are

decorations of the 2223 orbifold [i.e. group 118 in our

numbering scheme (Robins et al., 2004b; Robins, 2015)]. (Note

that regular ribbon tilings with 23� symmetry necessarily

embed on the P, D and G TPMSs to form reticulations with

2 ? 23 symmetry.) Regular rare free tilings necessarily have

lower symmetry. We find only one symmetry group commen-

surate with the P, D and G TPMSs that supports such tilings,

namely 243. Additionally, the H TPMS supports two potential

symmetry groups, ?243 and 243.

4. Embedding ?243 and 243 in H2

Consider free tilings that are regular (1-transitive faces, edges

and vertices), where the tile boundaries are composed of

vertices and edges and the tiles themselves are internally

branched. These tilings have symmetry ?243 or 243.

The Delaney–Dress representation of the decoration,

adapted for free tilings in Evans et al. (2013a), of the ?243
domain is given in Fig. 4. This tiling maps to the H surface via

the embedding of the ?243 pattern as a subgroup of the H

surface symmetry, namely ?2226=���. The tiling (not yet

embedded) is labelled by the group–subgroup number as

listed in Robins et al. (2004a,b), in this case 26RT before

embedding in the ?2226=��� tiling. There is one embedding of

the tiling 26RT into the ?2226 tiling that is commensurate with

the translational symmetries of the H surface ð���Þ (Robins et

al., 2004a). This embedded free tiling is shown in Fig. 5,

labelled ?222626RTðcosh�1
ð13:9ÞÞ, corresponding to the (rare

tree) tiling symmetry, the group–subgroup index, and the

length in H2 of the tree edges.

The sole example of a regular free tiling of the 243 orbifold

contains a single edge passing from the threefold rotation site

to the twofold rotation (labelled QE in Fig. 6). Since the

orbifold is a subgroup of both the ?246 and ?2226 orbifolds, it

can be mapped onto the P, D, G surfaces, or the H surface,

giving two very distinct group structures. Those structures are

determined by the relevant supergroups, namely ?2226=���
and ?246=��� for the H and P, D, G surfaces, respectively.

Accordingly, this tiling is denoted 22RT as a reticulation of the

H surface, and 49RT as a reticulation of the P, D and G

surfaces.

The D-symbol encodes the topology and two-dimensional

symmetry of a tiling, but not its explicit geometry. In

general, distinct two-dimensional embeddings are possible,

since the orbifold geometry is not unique. In addition, since we

are mapping the tilings onto TPMSs embedded in three-

dimensional Euclidean space and a single orbifold domain can

embed in more than one way on the surface, further structural

multiplicity is possible. Free tilings on the cubic and hexagonal

TPMSs are generated by all possible embeddings of ?243 and

243 orbifolds as subgroups of ?246 and ?2226, respectively.

Admissible orbifold geometries are thus constrained to be

commensurate with the parent (?246 or ?2226) geometry, so

that symmetry sites of the tiling orbifold must coincide with

symmetry elements of the parent group of the embedding

TPMS.

In contrast to the Coxeter case, stellate orbifolds – which

contain rotation centres – have an unlimited number of

embeddings within the ?246 or ?2226 setting. The full space of

possible embeddings for orbifolds of the form 222k (for k> 1)

is detailed in Evans et al. (2013a). In short, embedding the

222k orbifolds leads to a two-parameter family of orbifold

domains: we may index all possible quadrilateral domains of

the 222k orbifold exactly by embeddings of parallelograms of

unit area in Z� Z.

The 243 orbifold is double the size of a 2226 orbifold. An

embedded 243 domain may be constructed by taking a 2226
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Figure 5
One embedding of the ?243 domain into the ?2226 tiling of H2, and the
resulting free tiling: ?222626RTðcosh�1

ð13:9ÞÞ.

Figure 4
The Delaney–Dress symbol for the ?243 orbifold decoration having one
edge passing from the ?3 vertex along the mirror boundary to a ?2 vertex,
called 26RT. A visual representation of the decoration and chambers on
the orbifold is also shown.

Figure 6
The encoding for the 243 orbifold decoration having one edge passing
from the threefold rotation to the twofold rotation marked QE. This tiling
is called 22RT as a member of the ?2226=��� quotient group, or 49RT as
a member of ?246=���.



symmetry group and doubling across an edge, where the

sixfold rotation becomes a threefold rotation, one twofold

rotation vanishes, and two copies of the remaining two twofold

rotations give the four twofold rotations of 243. The twofold

rotation that vanishes must be carefully chosen, as only one

type of the three distinct types of twofold rotations is suitable.

Regular forests constructed in the 243 orbifold have a single

edge passing across the orbifold domain from the threefold to

the twofold rotation site. Thus the twofold rotation defining

the edge is sufficient to define each forest. It follows that the

set of possible edge locations and lengths is identical to that of

the 2226 forests described in Evans et al. (2013a), excluding

the cases where the edge lies on the twofold site (of ?2226 that

is not present in the 243 orbifold). The first five members of

the family of degree-3, regular, rare free tilings commensurate

with the ?2226 pattern are tabulated in Fig. 7. The embedding

with the shortest edge length ðcosh�1
ð13:9ÞÞ has additional

symmetry, equivalent to the ?222626RTðcosh�1
ð13:9ÞÞ structure.

We have also deduced the rare, regular, free degree-3

forests commensurate with the P, D and G surfaces. Here, too,

we label these tilings ?246NRTðlÞ, where N denotes the group

number in Robins et al. (2004b) and l is the edge length. The

first five members of the family of degree-3, regular, rare free

tilings commensurate with the ?246 pattern are tabulated in

Fig. 8.

5. Embedding 243 on the TPMS: entangled nets from
regular 243 patterns

A surface reticulation inherits three-dimensional symmetries

from its two-dimensional orbifold and the underlying surface

pair uniquely (Hyde et al., 2014). It turns out that all 243 tilings

in the P, D or G surfaces give rhombohedral three-dimen-

sional Euclidean patterns with space group R32. Similarly, 243

tilings embedded in the H surface result in patterns with space

group P312. Examples of fundamental domains of the 243

embedding in the extended surfaces are shown in Fig. 9.

By construction, all of our rare tilings have translation

subgroups that respect all the translations of the related

(oriented) TPMS. Reticulations of the compactified TPMS

formed by identifying all translationally equivalent surface

sites are quotient graphs of the infinite net on the surface.
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Figure 7
The lowest-order members of the family of degree-3, regular, rare free
tilings commensurate with the ?2226 pattern.

Figure 8
The lowest-order members of the family of degree-3, regular, rare free
tilings commensurate with the ?246 pattern.



Since the compactified TPMSs are genus-3 (or ���) for the P,

D, G and H surfaces, the corresponding quotient graphs are of

degree-3 reticulating a genus-3 manifold. Since the parent net

is regular, all vertices in the quotient graph are interchange-

able via graph automorphisms. The rare tilings have a vertex at

the threefold site on the 243 orbifold (with 1
3 of a vertex per

orbifold copy). Six copies of the decorated 243 orbifold tile a

single (genus-3) ��� orbifold, giving two vertices per genus-3

manifold and the corresponding quotient graph that is formed

from the infinite reticulation modulo the set of translation

vectors of the (oriented) TPMS (excluding those translations

that swap sides of the surface). The underlying regular degree-

3 net therefore has exactly two vertices per unit cell. This

implies that the quotient graph of the reticulated patterns on

all four TPMSs is a �-graph (two vertices connected by three

edges, K3
2). Since the graph vertices are located at sites with

threefold rotational symmetry (in both the two-dimensional

orbifold and three-dimensional space-group settings), the

resulting nets formed by these reticulations will be either

arrays of discrete �-graphs, or arrays of (translationally

equivalent) hcb nets (O’Keeffe et al., 2008). Further, less

symmetric regular examples can also have no more than two

vertices per unit cell if they reticulate any genus-3 TPMS and

respect all translations, since the number of copies of their

orbifolds within ��� cannot exceed six. So no degree-3

weaving that forms from a regular rare tiling on a genus-3

TPMS can contain 3-periodic component nets. It is noteworthy

that srs nets, whose intergrowths are common among regular

dense tilings, are suppressed for these maximally symmetric

regular rare tilings. (We note that other arrangements are

possible if we choose irregular tilings, thereby breaking the

threefold symmetry of the pattern.)

Consider further other regular free tilings that are poten-

tially compatible with genus-3 TPMSs, namely those with

degrees k ¼ 4; 6. In those cases, regular rare tilings are

incompatible with the crystallographic hyperbolic groups on

the P, D, G and H surfaces that contain all translations of the

(oriented) genus-3 surfaces. However, crystalline nets (of

degrees 3 as well as 4 and 6) can be

formed from rare free tilings on these

TPMSs if we allow patterns whose

orbifolds lie outside our restricted class

of genus-3 crystallographic hyperbolic

groups.

A summary of the structures that

result from the reticulation of these

tilings over each of the H, D, P and G

surfaces is given in Table 1. The struc-

tures are named to reflect the original

tiling in H2 as well as the surface over

which the tilings were reticulated:

P49RTðcosh�1
ð15ÞÞ is the reticulation of

the ?24649RTðcosh�1
ð15ÞÞ tiling over the
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Figure 9
(a) The highlighted tile shows one possible 243 fundamental domain within the H surface, itself
coloured by tiles that describe the ?2226 domains. This tile builds up to the complete surface via the
P312 space-group operations. (b), (c), (d) A highlighted tile of the 243 symmetry group within the P,
D and G surfaces, respectively. This curved tile gives the complete surface through the R32 space
group.

Table 1
Sparse degree-3 nets.

The nomenclature and net descriptors are explained in the text.

Structure Figure Topology Notes

H26RT ðcosh�1
ð13:9ÞÞ Fig. 10 �-graph Untangled finite graphs

H22RT ðcosh�1
ð26:9ÞÞ Fig. 11 hcb Two-dimensional Borromean layers

H22RT ðcosh�1
ð154:9ÞÞ Fig. 12 hcb Threefold interpenetrated 2-periodic layers, DoC = 6, Hopf links

H22RT ðcosh�1
ð554Þ : 1Þ Fig. 13 hcb Threefold two-dimensional Borromean combined with three-dimensional Borromean, no

interpenetration, IoS = 3
H22RT ðcosh�1

ð554Þ : 2Þ Fig. 14 �-graph Two-dimensional layers of Hopf link catenated �-graphs
D49RT ðcosh�1

ð15ÞÞ hcb Trivial, untangled
D49RT ðcosh�1

ð63ÞÞ Fig. 15 hcb Fourfold interpenetrated layers, DoC = 3
D49RT ðcosh�1

ð399ÞÞ Fig. 16 hcb Single 2-periodic component, 6-cycles are trefoil knots
D49RT ðcosh�1

ð3233ÞÞ Fig. 17 hcb Single 2-periodic component, 6-cycles are ð4; 3Þ torus knots
P49RT ðcosh�1

ð15ÞÞ hcb Trivial, untangled
P49RT ðcosh�1

ð63ÞÞ �-graph Trivial, untangled
P49RT ðcosh�1

ð255ÞÞ hcb Fourfold interpenetrated layers, DoC = 3, equivalent to D49RT ðcosh�1
ð63ÞÞ

P49RT ðcosh�1
ð399ÞÞ Fig. 18 hcb Three-dimensional Borromean structure, IoS = 1

P49RT ðcosh�1
ð3233ÞÞ Fig. 19 hcb Catenated three-dimensional structure, DoC = 12, IoS = 2

Gþ49RT ðcosh�1
ð63ÞÞ Fig. 20 hcb Three-dimensional Borromean structure, IoS = 1

G�49RT ðcosh�1
ð63ÞÞ hcb Trivial, untangled

Gþ49RT ðcosh�1
ð255ÞÞ Fig. 21 hcb 2� three-dimensional Borromean structure, IoS = 2

G�49RT ðcosh�1
ð255ÞÞ Fig. 22 hcb Two-dimensional to three-dimensional catenated structure. Catenation same as the two-

dimensional to two-dimensional interpenetration in H22RT ðcosh�1
ð154:9ÞÞ. DoC = 6, IoS = 1

Gþ49RT ðcosh�1
ð399ÞÞ Fig. 23 hcb Catenated three-dimensional structure equivalent to P49RT ðcosh�1

ð3233ÞÞ. DoC = 12, IoS = 2



P surface. Some details of the resulting three-dimensional

structure are given, such as the Index of Separation (IoS),

which ascertains how many components must be removed for

the structure to separate into two (Carlucci et al., 2003b), and

the Density of Catenation (DoC), which is a measure of

catenation in a structure: it collates the number of distinct

cycles with which a single hexagon is threaded (Carlucci et al.,

2003b). We also use the description Borromean to denote

structures whose cycles are entangled in a Borromean ring

motif (Carlucci et al., 2003a). Note that this is similar to, but

formally inequivalent to, Brunnian entanglements, since the

removal of one component of a Borromean entangled struc-

ture in some cases will cause the structure to separate into two

parts, not separate into individual components as required by

Brunnian conditions. Data files (cgd) for these structures are

available as supporting information.

The patterns formed on the H surface with the shortest

edges are spatially simple structures. Examples include trivial

entanglements, such as the array of disjoint untangled

�-graphs (H26RTðcosh�1
ð13:9ÞÞ (Fig. 10).

Additional reticulations of the H surface yield a number

of subtle entanglements of multiple hcb nets. The

H22RTðcosh�1
ð26:9ÞÞ example leads to a stack of parallel layers,

each containing a trio of hcb nets, which are mutually entan-

gled within each layer (Fig. 11). Adjacent layers are however

not entangled with each other. Within each layer, the nets

entangle such that hexagonal rings of each component net

form Borromean links: removal of one hcb net leaves the

remaining pair of nets unentangled. Thus, in this case, the IoS

is 1. Its reticulation on the H surface has space-group

symmetry P312; the pattern can be further symmetrized

without altering its entangled structure by straightening all

edges, giving a pattern with symmetry P31m. The two-

dimensional Borromean entanglement has been described in

the context of chemistry (Carlucci et al., 2003a); a compre-

hensive account of the occurrence of such structures in metal–

organic frameworks can be found in Carlucci et al. (2014).

The H22RTðcosh�1
ð154:9ÞÞ structure (Fig. 12) is a repeated,

parallel set of interpenetrating layers each with three

components. It has a DoC = 6, where the catenation of pairs of

hexagonal rings from distinct hcb nets is via Hopf links, and six

edges thread each hexagonal ring (three from each of the

remaining two distinct hcb nets).

The H22RTðcosh�1
ð554Þ : 1Þ (Fig. 13) pattern demonstrates

the further complexity that can be realized by entangled

structures. Like H22RTðcosh�1
ð26:9ÞÞ, it contains stacks of three

hcb nets, mutually tangled in a Borromean fashion, without

threading of any pair of nets. In contrast to the previous
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Figure 12
(a) The ?222622RTðcosh�1

ð154:9ÞÞ tiling in H
2. (b) The

H22RT ðcosh�1
ð154:9ÞÞ structure on the H surface, resulting in (c) a

repeated, parallel set of 2-periodic interpenetrating layers, each
containing three hcb nets. DoC = 6.

Figure 13
(a) ?222622RTðcosh�1

ð554Þ : 1Þ in H
2. (b), (c) H22RT ðcosh�1

ð554Þ : 1Þ
contains two distinct modes of entanglement, both with Borromean links
of cycles, and free of catenation of hexagonal rings from distinct hcb net
pairs. (d) One layer of the pattern, revealing the Borromean nature of a
trio of hcb nets within a single two-dimensional layer. (e) A single
component net from each of three distinct two-dimensional layers, which
together mutually entangle, also in Borromean fashion. IoS = 3.

Figure 11
(a) The ?222622RT ðcosh�1

ð26:9ÞÞ rare free tiling in H
2; (b)

H22RT ðcosh�1
ð26:9ÞÞ on the H surface and (c) in E3. The resulting pattern

is a parallel stack of disjoint layers, each containing a trio of hcb nets
forming a two-dimensional Borromean entangled pattern.

Figure 10
(Left) The ?222626RTðcosh�1

ð13:9ÞÞ in H
2 and (Right) the

H26RT ðcosh�1
ð13:9ÞÞ structure shown on the H surface, which consists of

untangled finite �-graphs.



example, however, the layers are themselves also entangled in

a Borromean manner. Each hcb component of each two-

dimensional Borromean layer entangles with components of

adjacent layers via a three-dimensional Borromean entangle-

ment (see Carlucci et al., 2003b, 2014). Equivalently, each hcb

component within a single copy of the three-dimensional

Borromean entanglement has two additional hcb components

associated by a two-dimensional Borromean entanglement.

The IoS is 3, where an entire layer of two-dimensional

Borromean must be removed to separate the structure in two.

The catenation of finite �-graphs into a 2-periodic array is

also possible. The H22RTðcosh�1
ð554Þ : 2Þ reticulation, where

the �-graphs link to their neighbours via a Hopf link, is shown

in Fig. 14.

Degree-3 regular rare free tilings on the D surface result in

a number of fascinating patterns, including four-component

weavings and self-knotted nets. The D49RTðcosh�1
ð63ÞÞ struc-

ture contains four distinct hcb nets (Fig. 15) in a fourfold

interpenetrating pattern. Hexagonal rings belonging to pairs

of distinct nets thread each other to form Hopf links, and the

DoC = 3. Carlucci et al. (2014) report four chemical frame-

works with fourfold interpenetrating hcb nets: none are

equivalent to the example shown here. This pattern is closely

related to a beautiful weaving sketched by M. C. Escher,

containing a pair of inter-grown hcb nets (Schattschneider,

2004). Where each component (trigonally distorted) hcb net in

our weaving has 3 symmetry at the centre of each hexagonal

cycle, Escher’s (rectangular) nets contain hexagons with

twofold symmetry only. The weaving of the two nets is subtly

distinct from that of a pair of nets in our structure.

The D49RTðcosh�1
ð399ÞÞ tiling results in a stack of parallel

single self-entangled hcb nets. Individual hexagonal rings form

trefoil knots (Fig. 16). In contrast, the D49RTðcosh�1
ð3233ÞÞ

tiling also gives a self-entangled arrangement in E3, whose

individual hexagonal rings form ð4; 3Þ torus knots (Fig. 17).

The structures that result by mapping these regular, rare,

free tilings onto the P surface are also complex. The

P49RTðcosh�1
ð399ÞÞ pattern leads to an array of parallel hcb

nets, mutually entangled to form a three-dimensional Borro-

mean structure (Fig. 18). Despite its apparent complexity in

Euclidean space, this structure too has been synthesized

chemically; a comprehensive account of the occurrence of

such structures in metal–organic frameworks can be found in

Carlucci et al. (2014).

The P49RTðcosh�1
ð3233ÞÞ structure is comprised of hcb two-

dimensional nets which mutually catenate to form a three-

dimensional structure (Fig. 19). The IoS is 2, which indicates

the structure is a twofold structure where the layers are

catenated, i.e. if every second net is deleted the structure

remains catenated. The full pattern is comprised of two

identical copies of this, also mutually interpenetrating.
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Figure 15
(a) The ?24649RTðcosh�1

ð63ÞÞ tiling in H2. (b), (c) The D49RT ðcosh�1
ð63ÞÞ

structure is comprised of disjoint layers with fourfold interpenetration.
DoC = 3.

Figure 16
(a) The ?24649RTðcosh�1

ð399ÞÞ tiling in H2, and (b) D49RTðcosh�1
ð399ÞÞ on

the D surface. (c) The resulting pattern in E3 is comprised of disjoint,
isolated layers with a single, self-catenated hcb net whose cycles are
trefoil knots.

Figure 14
(a) ?222622RT ðcosh�1

ð554Þ : 2Þ in H
2. (b) The H22RTðcosh�1

ð554Þ : 2Þ
reticulation of the H surface, forming arrays of �-graphs. (c) The resulting
pattern in E3: two-dimensional layers of Hopf link catenated �-graphs.

Figure 18
(a) ?24649RTðcosh�1

ð399ÞÞ, shown in H
2. (b), (c) The entangled net

P49RT ðcosh�1
ð399ÞÞ, shown on one unit cell of the P surface and in E3, is a

three-dimensional Borromean entanglement of hcb components. IoS = 1.

Figure 17
(a) The ?24649RTðcosh�1

ð3233ÞÞ tiling in H
2. (b), (c) The

D49RTðcosh�1
ð3233ÞÞ structure is comprised of disjoint, isolated layers

with a single, self-catenated hcb net whose cycles are ð4; 3Þ torus knots.



In contrast to reticulations of the other TPMSs analysed to

date, the lack of two-dimensional reflections in these rare free

tilings leads to a pair of patterns for each tiling on the G

surface, as discussed in detail elsewhere (Robins et al., 2005).

(We denote these distinct patterns ‘Gþ’ and ‘G�’.) A range of

patterns emerges (Figs. 20, 21, 22 and 23), some of which are

equivalent entanglements (or isotopes) to previous examples.

6. Embedded h-graphs on the tritorus

The catalogue of examples given in the previous section, with

a wealth of entangled structures, is made up of just two

component nets: hcb or the �-graph. Here we explore a little

further possible entanglements of the finite �-graph, which can

be generated readily using the apparatus introduced above.

The P, D and G and H surfaces can be considered as partial

compactifications of H2, ‘rolling’ the infinite hyperbolic plane

(H2) up, to form a surface with three translations, just as an

infinite planar pattern in E2 can be rolled into a 1-periodic

pattern on the cylinder. Periodic cylindrical patterns can be

(abstractly) compactified once more via identification of all

points related by the single remaining lattice vector, to give a

(0-periodic) pattern on the (genus-1) torus. Likewise, TPMSs

can be further compactified via the remaining three lattice

vectors of the surface, forming the genus-3 tritorus (the

orbifold ���). The H surface is the partial compactification of

H
2 towards a tritorus with ?2226 symmetry, and the P, D and

G surfaces are related to a ?246 tritorus. Details of the map

fromH2 to the tritorus for these surfaces are given in Robins et

al. (2004a,b).

Alternatively, hyperbolic patterns whose symmetry is a

subgroup of ?2226/?246 and a supergroup of ��� will seam-

lessly reticulate the tritorus. Rare, regular hyperbolic forests

with symmetry 243 fulfil this condition, and they will map onto

the tritorus to give various embeddings of the �-graph, stem-

ming from the presence of two regular degree-3 vertices per

tritorus (���) domain in H2.

Distinct forests within the same conjugacy class form

equivalent reticulations of TPMSs, since the two-dimensional

conjugacies of the underlying hyperbolic tiling are also three-

dimensional conjugacies (corresponding to isometries) on the

TPMS. However, these two-dimensional conjugacies are not

conjugacies of the tritorus. Therefore a single conjugacy class

of hyperbolic forests can result in a number of distinct isotopes

of the embedded �-graph on the tritorus.

These issues are most readily comprehended with reference

to the P surface. Compactification of a single unit cell of the P

surface gives a tritorus with ?246 symmetry. The compactifi-

cation process takes a single node from the surface and glues

opposite arms, giving a three-looped tritorus. Hyperbolic

patterns with symmetry 243 on this tritorus give two distinct

embedded graphs, since one conjugacy of H2 does not corre-

spond to a conjugacy of the ?246 tritorus. Those cases are

formed by compactifying two distinct unit cells of the surface,

giving two embedded �-graphs (Fig. 24). One of those choices

of unit cell leads to a simpler finite graph: the unit cell is

chosen where the reticulation has the least number of

connected parts, as illustrated in Fig. 24.

Regular rare forests arising from 243 tilings related to the H

surface (?2226) lead to two distinct embedded �-graphs on the

tritorus, since there is one conjugacy of H2 that does not

correspond to a conjugacy of this tritorus. We outline the

resulting �-graph embeddings in Table 2, including the related

H surface reticulations.

These examples lead to complex entanglements of the

�-graph in addition to the familiar (‘trivial’) untangled
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Figure 20
(a) The ?24649RT ðcosh�1

ð63ÞÞ tiling of H2. (b) The Gþ49RT ðcosh�1
ð63ÞÞ

reticulation of the G surface, and (c) the structure in E3, a standard three-
dimensional Borromean entanglement of hcb components, equivalent to
the P49RTðcosh�1

ð399ÞÞ structure. IoS = 1.

Figure 19
(a) The ?24649RTðcosh�1

ð3233ÞÞ tiling in H
2. (b), (c) The structure

P49RTðcosh�1
ð3233ÞÞ is a catenated three-dimensional array of hcb nets.

(d) Two adjacent catenated layers are shown. (e) A subset of the pattern
containing every second layer of the twofold structure, which remains
catenated. Here, the DoC = 12 and the IoS = 2.

Figure 21
(a) The ?24649RTðcosh�1

ð255ÞÞ tiling in H2. (b) A single unit cell of the G
surface showing the structure Gþ49RT ðcosh�1

ð255ÞÞ. (c) The resulting
structure in E3 contains two copies of a three-dimensional Borromean
entanglement of hcb components sitting one inside the other. IoS = 2.



embedding. In particular, the ?222622RTðcosh�1
ð26:9ÞÞ and

?222622RTðcosh�1
ð154:9ÞÞ tilings induce a symmetric 3-ravel on

the tritorus, discussed in more detail elsewhere (Castle et al.,

2008) (Figs. 25 and 26). This isotope is noteworthy, since it is

clearly entangled, yet contains no knots or links, since all

cycles in the graph are unknotted and free of links. A ravelled

metal–organic molecule has been synthesized, confirming the

relevance of these patterns to material structures (Li et al.,

2011). In contrast, knotted embeddings are generated from

the second embedding of ?222622RTðcosh�1
ð154:9ÞÞ tiling and

both embeddings of ?222622RTðcosh�1
ð554Þ : 2Þ tiling (Figs. 26

and 27).

It is of interest to compare these entanglements with the

related hcb arrays formed on the parent H surface by these

tilings. In some, though not all, cases, the �-graph embeddings

capture a qualitative sense of the entanglement of the related

array of nets on the H surface. For example, the trivial

embedding of a �-graph lifts to an array of disjoint �-graphs

obtained on the H surface. In contrast, the 3-ravel embedding

of the �-graph lifts to the two-dimensional Borromean

entanglement (Figs. 25 and 11); in both cases the embeddings

are free of catenated rings. Further, the highly catenated and

entangled infinite frameworks on the H surface are related to

more complex embeddings of the �-graph, containing knotted

cycles (Figs. 27 and 14).

We give just a few examples of �-graph embeddings

resulting from the ?246 free tilings, to demonstrate the general

nature of this construction. We choose to compactify one

unit cell of the P surface reticulation

in the orientation given in Fig. 24(a).

The resulting embeddings are listed in

Table 3.

7. Discussion

In closing, we put this work in a broader

context. First, the reader may wonder

why we have focused on regular forests,

consisting of maximally symmetric

(regular) arrays of trees in hyperbolic

space. There are simpler symmetric

tilings of the hyperbolic plane, namely

examples whose tiles are finite. We are

slowly enumerating those examples too,

and that underlies the Epinet project

(http://epinet.anu.edu.au), described in

detail elsewhere (Ramsden et al., 2009).

Given the unfamiliarity of hyperbolic

geometry, it is perhaps illuminating to

consider the analogous problem in two-

dimensional Euclidean space. There,

tilings of the plane by regular trees are

only possible if the trees are of degree-2,

forming simple arrays of lines in the

plane. In that case regular examples
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Table 2
�-graph embeddings from regular, rare degree-3 forests.

Structure H net Tritorus A Tritorus B Figure

?222626RT ðcosh�1
ð13:9ÞÞ Zero-dimensional �-graph, isolated Trivial Trivial

?222622RT ðcosh�1
ð26:9ÞÞ Two-dimensional Borromean Trivial 3-ravel Fig. 25

?222622RT ðcosh�1
ð154:9ÞÞ Interpenetrating hcb, DoC = 6, Hopf links only 3-ravel Cycles are 3-twist knots Fig. 26

?222622RT ðcosh�1
ð554Þ : 1Þ Two-dimensional � three-dimensional Borromean Trivial 3-ravel

?222622RT ðcosh�1
ð554Þ : 2Þ Zero-dimensional to two-dimensional catenation of �-graphs

by Hopf links
Cycles are 5-twist knots Complex entanglement Fig. 27

Figure 23
(a) The ?24649RTðcosh�1

ð399ÞÞ tiling of H2. (b)–(d) The Gþ49RTðcosh�1
ð399ÞÞ tiling leads to a three-

dimensional catenated structure, with equivalent entanglement to the P49RTðcosh�1
ð3233ÞÞ pattern

seen in Fig. 19. Here, the DoC = 12 and the IoS = 2.

Figure 22
(a) The ?24649RTðcosh�1

ð255ÞÞ tiling of H2. (b), (c) The G�49RTðcosh�1
ð255ÞÞ pattern, built using the

alternative covering map of the G surface to the previous example. (d) When the structure is viewed
from above, the entanglement is a two-dimensional to three-dimensional catenation version of the
two-dimensional to two-dimensional interpenetration of structure H22RTðcosh�1

ð154:9ÞÞ. DoC = 6
and IoS = 1.

Table 3
�-graph embeddings from regular, rare degree-3 forests.

H
2 tiling E

3 net Tritorus Figure

?24649RT ðcosh�1
ð15ÞÞ Trivial hcb nets Trivial �-graph

?24649RT ðcosh�1
ð63ÞÞ �-graphs, isolated Trivial �-graph

?24649RT ðcosh�1
ð255ÞÞ Fourfold interpenetrating

hcb nets
3-ravel

?24649RT ðcosh�1
ð399ÞÞ Three-dimensional

Borromean
3-ravel Fig. 28

?24649RT ðcosh�1
ð3233ÞÞ Catenated twofold Cycles are

3-twist knots
Fig. 29



consist of parallel lines. (It is the vastly enhanced scope of

parallelism in hyperbolic space that admits the more complex

examples in hyperbolic space.) Evidently, in Euclidean space,

the concepts of dense and rare packings of parallel lines are

also trivial: a dense packing is a stack of parallel lines, all

overlapping, while rare regular examples are 1-periodic arrays

of displaced and parallel lines. As discussed above, any

2-periodic Euclidean pattern can be partially compactified to

form a 1-periodic reticulation on a cylinder; the second lattice

vector in the original planar array maps to a single loop on the

cylinder. Thus, regular dense and rare Euclidean forests

correspond to multiple parallel disjoint loops or nested helices

on the cylinder, respectively.

As we have demonstrated, the wealth of analogous patterns

in hyperbolic space is far richer. An infinite variety of hyper-

bolic forests can be constructed, with trees of arbitrary degree

via judicious tuning of the tree edge lengths. Among those,

regular forests, with symmetrically equivalent vertices and

edges, are the simplest (analogous to the regular Platonic

polyhedra, whose edges form regular reticulations on the

sphere). And a subset of those forests, whose symmetries

correspond to crystallographic hyperbolic groups, map into

three-dimensional Euclidean space, via TPMSs, to 3-periodic

structures. We have demonstrated that those structures can

consist of finite or extended periodic nets. A previous publi-

cation analysed the variety of entangled

structures that emerge from dense

forests on the P, D and G and H

surfaces (Evans et al., 2013a). There,

forests of degrees 3, 4 and 6 are admis-

sible, whose individual component trees

map to 0-, 1- 2- and 3-periodic regular

nets. The last cases form mutually

entangled srs, dia and pcu nets, respec-

tively, on the TPMS. In this paper, we

have canvassed the patterns that

emerge from the next simplest hyper-

bolic forests, namely regular rare

examples. Here only 0- and 2-periodic

nets of degree 3 are possible. Despite

the more limited net topologies that

build the entangled patterns – namely

�-graphs and hcb nets – an extra-

ordinary variety of embeddings has

been found. Some of those patterns are

trivial (untangled), many others are

catenated in ways recognized already

in material framework structures,

especially metal–organic frameworks.

Further, it is clear that a variety of

entanglement motifs are possible, from

simpler Hopf and Borromean types, to

ravels, and cases with complex features,

such as hierarchical two- to three-

dimensional entanglements. In some

(though not all) cases, those can be

partially characterized by measures

introduced by chemists to label tangled

structures (Alexandrov et al., 2012).

However, it is apparent from the

more complex examples presented here
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Figure 24
(a) The decoration of a hyperbolic forest of symmetry 243 on a unit cell of
the P surface. (b) A distinct reticulation of the unit cell, due to an
equivalent hyperbolic forest on the P surface. This pattern results by a
simple reflection in an edge of the ?246 orbifold. While this operation is
both two- and three-dimensional conjugacies of the pattern, it is not a
conjugacy of the pattern on the tritorus.

Figure 27
The two graphs from the tritorus reticulation of the forest ?222622RTðcosh�1

ð554Þ : 2Þ. A
representation of these embedded graphs, both having knotted cycles.

Figure 26
Two orientations of the embedded graph of ?222622RTðcosh�1

ð154:9ÞÞ on the tritorus. The graphs
with the second vertex cut for visual simplicity: the first is a simple 3-ravel, the second having
knotted cycles.

Figure 25
(a) ?222622RTðcosh�1

ð26:9ÞÞ on the tritorus by one orientation. (b) The resulting embedded graph is
a trivial �-graph. (c) A second orientation, being a conjugacy of the forest in H2 but not on the
tritorus, reticulated over the tritorus. (d) This gives a simple 3-ravel (Castle et al., 2008) embedding
of a finite �-graph.



that much work remains to properly characterize generic

entangled nets, even when the components are very simple

layer structures, such as the hcb net.

Lastly, we note that there remain a number of other TPMSs

that can be used as supports for such reticulations. Certainly,

the genus-3 TPMSs are the simplest, and will give the most

symmetric regular structures. One other genus-3 surface with

distinct compactified structure is known, namely the tetra-

gonal CLP surface (Hyde et al., 2014). It turns out that this

case does not yield novel examples of tangled patterns beyond

those explored in the paper. We therefore assert that the most

symmetric examples of tangled patterns related to regular

hyperbolic forests are now fully known.
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Figure 28
(a) ?24649RT ðcosh�1

ð399ÞÞ on the tritorus. (b) The embedded graph is a
3-ravel. (c) A planar representation, where one vertex has been split
open.

Figure 29
(a) The graph embedding resulting from the compactification of
?24649RT ðcosh�1

ð3233ÞÞ to the tritorus. (b) A simpler representation of
this embedded graph, where a vertex has been split for simplicity.
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